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Abstract. Corpus-based set expansion (i.e., finding the “complete” set
of entities belonging to the same semantic class, based on a given corpus
and a tiny set of seeds) is a critical task in knowledge discovery. It
may facilitate numerous downstream applications, such as information
extraction, taxonomy induction, question answering, and web search.
To discover new entities in an expanded set, previous approaches either
make one-time entity ranking based on distributional similarity, or resort
to iterative pattern-based bootstrapping. The core challenge for these
methods is how to deal with noisy context features derived from free-text
corpora, which may lead to entity intrusion and semantic drifting. In
this study, we propose a novel framework, SetExpan, which tackles this
problem, with two techniques: (1) a context feature selection method that
selects clean context features for calculating entity-entity distributional
similarity, and (2) a ranking-based unsupervised ensemble method for
expanding entity set based on denoised context features. Experiments on
three datasets show that SetExpan is robust and outperforms previous
state-of-the-art methods in terms of mean average precision.

Keywords: Set Expansion, Information Extraction, Bootstrapping, Un-
supervised Ranking-Based Ensemble

1 Introduction

Set expansion refers to the problem of expanding a small set of seed entities
into a complete set of entities that belong to the same semantic class [29]. For
example, if a given seed set is {Oregon, Texas, Iowa}, set expansion should return
a hopefully complete set of entities in the same semantic class, “U.S. states”.
Set expansion can benefit various downstream applications, such as knowledge
extraction [8], taxonomy induction [27], and web search [2].

One line of work for solving this task includes Google Set [26], SEAL [29], and
Lyretail [2]. In this approach, a query consisting of seed entities is submitted to
a search engine to mine top-ranked webpages. While this approach can achieve
relatively good quality, the required seed-oriented online data extraction is costly.
Therefore, more studies [17][23][10][28][21] are proposed in a corpus-based setting
where sets are expanded by offline processing based on a specific corpus.
? Equal Contribution
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For corpus-based set expansion, there are two general approaches, one-time
entity ranking and iterative pattern-based bootstrapping. Based on the assumption
that similar entities appear in similar contexts, the first approach [17][23][10]
makes a one-time ranking of candidate entities based on their distributional
similarity with seed entities. A variety of “contexts” are used, including Web
table, Wikipedia list, or just free-text patterns, and entity-entity distributional
similarity is calculated based on all context features. However, blindly using all
such features can introduce undesired entities into the expanded set because
many context features are not representative for defining the target semantic class
although they do have connections with some of the seed entities. For example,
when expanding the seed set {Oregon, Texas, Iowa}, “located in ” can be a
pattern feature (the entity is replaced with a placeholder) strongly connected to
all the three seeds. However, it does not clearly convey the semantic meaning of

“U.S. states.” and can bring in entities like USA or Ontario when being used to
calculate candidate entity’s similarity with seeds. This is entity intrusion error.
Another issue with this approach is that it is hard to obtain the full set at once
without back and forth refinement. In some sense, iteratively bootstrapped set
expansion is a more conservative way and leads to better precision.

The second approach, iterative pattern-based bootstrapping [22][8][9], starts
from seed entities to extract quality patterns, based on a predefined pattern
scoring mechanism, and it then applies extracted patterns to obtain even higher
quality entities using another entity scoring method. This process iterates and the
high-quality patterns from all previous iterations are accumulated into a pattern
pool which will be used for the next round of entity extraction. This approach
works only when patterns/entities extracted at each iteration are highly accurate,
otherwise, it may cause severe semantic shift problem. Suppose in the previous
example, “located in ” is taken as a good pattern from the seed set {Oregon,
Texas, Iowa}, and this pattern brings in USA and Ontario. These undesired
entities may bring in even lower quality patterns and iteratively cause the set
shifting farther away. Thus, the pattern and entity scoring methods are crucial
but sensitive in iterative bootstrapping methods. If they are not defined perfectly,
the semantic shift can cause big problems. However, it is hard to have a perfect
scoring mechanism due to the diversity and noisiness of unstructured text data.

This study proposes a new set expansion framework, SetExpan, which ad-
dresses both challenges posed above for corpus-based set expansion on free text.
It carefully and conservatively extracts each candidate entity and iteratively
improves the results. First, to overcome the entity intrusion problem, instead of
using all context features, context features are carefully selected by calculating
distributional similarity. Second, to overcome the semantic drift problem, different
from other bootstrapped approaches, our high-quality feature pool will be reset
at the beginning of each iteration. Finally, our carefully designed unsupervised
ranking-based ensemble method is used at each iteration to further refine entities
and make our system robust to noisy or wrongly extracted pattern features.

Figure 1 shows the pipeline at each iteration. SetExpan iteratively expands an
entity set through a context feature selection step and an entity selection step. At
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Fig. 1: An example showing two steps in one iteration of SetExpan.

the context feature selection, each context feature is scored based on its strength
with currently expanded entities and top-ranked context features are selected. At
the entity selection step, multiple subsets of the selected representative context
features are sampled and each subset is used to obtain a ranked entity list.
Finally, all the ranked lists are collected to compute the final ranking list of each
candidate entity for expansion.

The major contributions of this paper are: (1) we propose an iterative set
expansion framework with a novel context feature selection approach, to handle
the issues of entity intrusion and semantic drift; (2) we develop an unsupervised
ranking-based ensemble algorithm for entity selection to make our system robust
and further reduce the impact of semantic drift. To evaluate the SetExpan method,
we use three publicly available datasets and manually label expanded results of
65 queries over 13 semantic classes. Empirical results show that SetExpan outper-
forms the state-of-the-art baselines in terms of Mean Average Precision. Code1

and datasets2 described in this paper are publicly.

2 Related Work

The problem of completing an entity set given several seed entities has attracted
extensive research efforts due to its practical importance. Google Sets [26] was
among the earliest work dealing with this problem. It used proprietary algorithms
and is no longer publicly accessible. Later, Wang and Cohen proposed SEAL
system [29], which first submits a query consisting of all seed entities into a
general search engine and then mines the top-ranked webpages. Recently, Chen
et al. [2] improved this approach by leveraging a “page-specific” extractor built in
a supervised manner and showed good performance on long-tail (i.e., rare) term
expansion. All these methods need an external search engine and require seed-
oriented data extraction. In comparison, our approach conducts corpus-based set
expansion without resorting to online data extraction from specific webpages.

1 https://github.com/mickeystroller/SetExpan
2 https://tinyurl.com/SetExpan-data



4 J. Shen, Z. Wu, D. Lei, J. Shang, X. Ren, J. Han

To tackle the corpus-based set expansion problem, Ghahramani and Heller
[6] used a Bayesian method to model the probability that a candidate entity
belongs to some unknown cluster that contains the input seeds. Pantel et al.
[17] developed a web-scale set expansion pipeline by exploiting distributional
similarity on context words for each candidate entity. He et al. proposed the
SEISA system [10] that used query logs along with web lists as external evidence
besides free text, and designed an iterative similarity aggregation function for
set expansion. Recently, Wang et al. [28] leveraged web tables and showed very
competitive results when not only seed entities but also intended class name
were given. While these semi-structured lists and tables are helpful, they are
not always available for some specific domain corpus such as PubMed articles
or DBLP papers. Perhaps the most relevant work to ours is by Rong [21]. In
that paper, the authors used the skip-gram feature combined with additional
user-generated ontologies (i.e., Wikipedia list) for set expansion. However, they
targeted the multifaceted expansion and exploited all skip-gram features for
calculating the similarity because two entities. In our work, we keep the core
idea of distributional similarity but calculate such similarity using only carefully
selected denoised context features.

In a broader sense, our work is also related to information extraction and
named entity recognition. Without given enough training data, bootstrapped
entity extraction system [5][7][8] is the most popular and effective choice. At each
bootstrap iteration, the system will first create patterns around entities; score
patterns based on their ability to extract more positive entities and less negative
entities (if provided), and use top-ranked patterns to extract more candidate
entities. Multiple pattern scoring and entity scoring functions are proposed. For
example, Riloff et al. [20] scored each pattern by calculating the ratio of positive
entities among all entities extracted by it, and scored each candidate entity by the
number and quality of its matched patterns. Gupta et al. [7] scored patterns using
the ratio of scaled frequencies of positive entities among all entities extracted by
it. All these methods are heuristic and sensitive to different model parameters.

More generally, our work is also related to class label acquisition [24][31]
which aims to propagate class labels to data instances based on labeled training
examples, and entity clustering [1][12] where the goal is to find clusters of entities.
However, the class label acquisition methods require a much larger number of
training examples than the typical size of user input seed set, and the entity
clustering algorithms can only find semantically related entities instead of entities
strictly in the same semantic class.

3 Our Methodology: The SetExpan Framework

This section introduces first the context features and data model used by SetExpan
in Sect. 3.1 and then our context-dependent similarity measure in Sect. 3.2. It
then discusses how to select context features in Sect. 3.3 and presents our novel
unsupervised ranking-based ensemble method for entity selection in Sect. 3.4.
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Fig. 2: (a) A simplified bipartite graph data model. (b) Similarity with seed entity
conditioned on two different sets of context features.

3.1 Data Model and Context Features

We explore two types of context features obtained from the plain text: (1) skip-
grams [21] and (2) coarse-grained types [8]. Data is modeled as a bipartite graph
(Figure 2(a)), with candidate entities on one side and their context features on
the other. Each type of context features are described as follows.
Skip-gram: Given a target entity ei in a sentence, one of its skip-gram is “w−1
w1” where w−1 and w1 are two context words and ei is replaced with a

placeholder. For example, one skip-gram of entity “Illinois” in sentence “We need
to pay Illinois sales tax.” is “pay sales”. As suggested in [21], we extract up to
six skip-grams of different lengths for one target entity ei in each sentence. One
advantage of using skip-grams is that it imposes strong positional constraints.
Coarse-grained type: Besides the unstructured skip-gram features, we use
coarse-grained type to filter those obviously-wrong entities. For examples, when
we expand the “U.S. states”, we will not consider any entity that is typed “Person”.
After this process, we can obtain a cleaner subset of candidate entities. This
mechanism is also adopted in [8].

After obtaining the “nodes” in bipartite graph data model, we need to model
the edges in the graph. In this paper, we assign the weight between each pair of
entity e and context feature c using the TF-IDF transformation [21], which is
calculated as follows:

fe,c = log(1 +Xe,c)

[
log |E| − log

(∑
e′

Xe′,c

)]
, (1)

where Xe,c is the raw co-occurrence count between entity e and context feature
c, |E| is the total number of candidate entities. We refer to such scaling as
the TF-IDF transformation since it resembles the tf-idf scoring in information
retrieval if we treat each entity e as a “document” and each of its context feature
c as a “term”. Empirically, we find such weight scaling performs outperforms some
other alternatives such as point-wise mutual information (PMI) [10], truncated
PMI [15], and BM25 scoring [19].
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3.2 Context-dependent Similarity

With the bipartite graph data model constructed, the task of expanding an entity
set at each iteration can be viewed as finding a set of entities that are most
“similar” to the currently expanded set. In this study, we use the weighted Jaccard
similarity measure. Specifically, given a set of context features F , we calculate
the context-dependent similarity as follows:

Sim(e1, e2|F ) =
∑

c∈F
min(fe1,c, fe2,c)∑

c∈F
max(fe1,c, fe2,c)

. (2)

Notice that if we change context feature set F , the similarity between entity pair
is likely to change, as demonstrated in the following example.

Example 1 Figure 2(a) shows a simplified bipartite graph data model where all
edge weights are equal to 1 (and thus omitted from the graph for clarity). The
entity “Florida” connects with all 6 different context features, while the entity
“Ontario” is associated with top 4 context features including 1 type feature and 3
skip-gram features. If we add all the 6 possible context features into the context
feature set F , the similarity between “Florida” and “Ontario” is 1+1+1+1

1+1+1+1+1+1 = 4
6 .

On the other hand, if we put only two context features “city , , USA”, “US
state of .” into F , the similarity between same pair of entities will change to
1+1
1+1 = 2

2 . Therefore, we refer such similarity as context-dependent similarity.

Finally, we want to emphasize that our proposed method is general in the sense
that other common similarity metrics such as cosine similarity can also be used.
In practice, we find the performance of a set expansion method depends not
really on the exact choice of base similarity metrics, but more on which contexts
are selected for calculating context-dependent similarity. Similar results were also
reported in a previous study [10].

3.3 Context Feature Selection

As shown in Example 1, the similarity between two entities really depends on
the selected feature set F . The motivation of context feature selection is to find
a feature subset F ∗ of fixed size Q that best “profiles” the target semantic class.
In other words, we want to select a feature set F ∗ based on which entities within
target class are most “similar” to each other. Given such F ∗, the entity-entity
similarity conditioned on it can best reflect their distributional similarity with
regard to the target class. In some sense, such F ∗ best profiles the target semantic
class. Unfortunately, to find such F ∗ of fixed size Q, we need to solve the following
optimization problem which turns out to be NP-Hard, as shown in [3].

F ∗ = arg max
|F |=Q

|X|∑
i=1

|X|∑
j>i

Sim(ei, ej |F ), (3)

where X is the set of currently expanded entities. Initially, we treat the user
input seed set S as X. As iterations proceed, more entities will be added into X.
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Given the NP-hardness of finding the optimal context feature set, we resort to
a heuristic method that first scores each context feature based on its accumulated
strength with entities in X and then selects top Q features with maximum scores.
This process is illustrated in the following example:

Example 2 For demonstration purpose, we again assume all edge weights in
Figure 2(a) are equal to 1 and let the currently expanded entity set X be {“Florida”,
“Texas”}. Suppose we want to select two “denoised” context features, we will first
score each context feature based on its associated entities in X. The top 4 contexts
will obtain a score 1 since they match only one entity in X with strength 1, and
the 2 contexts below will get a score 2 because they match both entities in X.
Then, we rank context features based on their scores and select 2 contexts with
highest scores: “city , , USA”, “US state of .” into F .

Finally, we want to emphasize two major differences of our context feature
selection method from other heuristic “pattern selection” methods. First, most
pattern selection methods require either users to explicitly provide the “negative”
examples for the target semantic class [11][8][22], or implicitly expand multiple
mutually exclusive classes in which instances in one class serve as negative
examples for all the other classes [4][15]. Our method requires only a small
number of “positive” examples. In most cases, it is hard for humans to find
good discriminative negative examples for one class, or to provide both mutually
exclusive and somehow related comparative classes. Second, the bootstrapping
method will add its selected “quality patterns” during each iteration into a quality
pattern pool, while our method will select high quality context features at each
iteration from scratch. If one noisy pattern is selected and added into the pool, it
will continue to introduce more irrelevant entities at all the following iterations.
Our method can avoid such noise accumulation.

3.4 Entity Selection via Rank Ensemble

Intuitively, the entity selection problem can be viewed as finding those entities
that are most similar to the currently expanded set X conditioned on the selected
context feature set F . To achieve this, we can rank each candidate entity based
on its score in eq. (4) and then add top-ranked ones into the expanded set:

score(e|X,F ) = 1
|X|

∑
e′∈X

Sim(e, e′|F ). (4)

However, due to the ambiguity of natural language in free-text corpora, the
selected context feature set F may still be noisy in the sense that an irrelevant
entity is ranked higher than a relevant one. To further reduce such errors, we
propose a novel ranking-based ensemble method for entity selection.

The key insight of our method is that an inferior entity will not appear
frequently in multiple pre-ranked entity lists at top positions. Given a selected
context set F , we first use sampling without replacement method to generate T
subsets of context features Ft, t = 1, 2, . . . , T . Each subset is of size α|F | where α
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Fig. 3: A toy example to show entity selection via rank ensemble.

is a model parameter within range [0, 1]. For each Ft, we can obtain a pre-ranked
list of candidate entities Lt based on score(e|X,Ft) defined in eq. (4). We use rit
to denote the rank of entity ei in list Lt. If entity ei does not appear in Lt, we
let rit =∞. Finally, we collect T pre-ranked lists and score each entity based on
its mean reciprocal rank (mrr). All entities with average rank above r, namely
mrr(e) ≤ T/r, will be added into entity set X.

mrr(ei) =
T∑

t=1

1
ri

t

, ri
t =

∑
ej∈E

I (score(ei|X,Ft) ≤ score(ej |X,Ft)) , (5)

where I(·) is the indicator function. Naturally, a relevant entity will rank at
top position in multiple pre-ranked lists and thus accumulate a high mrr score,
while an irrelevant entity will not consistently appear in multiple lists at high
position which leads to low mrr score. Finally, we use the following example to
demonstrate the whole process of entity selection.

Example 3 In Figure 3, we want to expand the “US states” semantic class given
a selected context feature set F with 4 features. We first sample a subset of 3 context
features F1 = {“city , , USA”, “US state of ,”, “pay sales tax .”}, and then
use F1 to obtain a pre-ranked entity list L1 = 〈“California”, “Arizona”, “Quebec”〉.
By repeating this process three times, we get 3 pre-ranked lists and ensemble them
into a final ranked list in which entity “Arizona” is scored 1.5 because it is ranked
in the 2nd position in L1 and 1st position in L3. Finally, we add those entities
with mrr score larger than 1, meaning this entity is ranked at 3rd position on
average, into the expanded set X. In this simple example, the model parameters
T = 3, α = |F1|

|F | = 0.75, and r = 3.

Put all together. Algorithm 1 summarizes the whole SetExpan process. The
candidate entity set E and bipartite graph data model G are pre-calculated and
stored. A user needs only to specify the seed set S and the expected size of output
set K. There is a total of 4 model parameters: the number of top quality context
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Algorithm 1 SetExpan
1: Input: Candidate entity set E, initial seed set S, entity-context graph G, expected size of output

set K, model parameters {Q, T, α, r}.
2: Output: The expanded set X.
3: X = S.
4: while |X| ≤ K do
5: Set F = ∅ // Select denoised contexts from scratch
6: Score context features based on X and add top Q denoised contexts into F .
7: // Entity-selection via rank ensemble
8: for t = 1, 2, . . . , T do
9: Uniformly sample αQ contexts and construct feature subset Ft.
10: Score entities based on Eq. (4) given Ft and obtain the pre-ranked list Lt.
11: Update the mrr score of each entity based on Eq. (5).
12: end for
13: X = X ∪ {e|mrr(e) ≥ T

r } // Add entities into expanded set X .
14: end while
15: Return X.

features selected in each iteration Q, the number of pre-ranked entity lists T , the
relative size of feature subset 0 < α < 1, and final mrr threshold r. The tuning
and sensitivity of these parameters will be discussed in the experiment section.

4 Experiments

4.1 Experimental Setup
Datasets preparation. SetExpan is a corpus-based entity set expansion system
and thus we use three corpora to evaluate its performance. Table 1 lists 3 datasets
we used in experiments. (1) APR is constructed by crawling all 2015 news articles
from AP and Reuters. (2) Wiki is a subset of English Wikipedia used in [13]. (3)
PubMed-CVD is a collection of research paper abstracts about cardiovascular
disease retrieved from PubMed.

For APR and PubMed-CVD datasets, we adopt a data-driven phrase mining
tool [14] to obtain entity mentions and type them using ClusType [18]. Each
entity mention is mapped heuristically to an entity based on its lemmatized
surface name. We then extract variable-length skip-grams for all entity mentions
as features for their corresponding entities, and construct the bipartite graph
data model as introduced in the previous section. For Wiki dataset, the entities
have already been extracted and typed using distant supervision. For the type
information in each dataset, there are 16 coarse-grained types in APR and 4
coarse-grained types in PubMed-CVD. For Wiki, since it originally has about 50
fine-grained types, which may reveal too much information, we manually mapped
them to 11 more coarse-grained types.

Query construction. A query is a set of seed entities of the same semantic
class in a dataset, serving as the input for each system to expand the set. The
process of query generation is as follows. For each dataset, we first extract 2000
most frequent entities in it and construct an entity list. Then, we ask three
volunteers to manually scan the entity lists and propose a few semantic classes
for each list. The proposed class should be interesting, relatively unambiguous
and has a reasonable coverage in its corresponding corpus. These semantic classes
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Table 1: Datasets statistics and Query descriptions
Dataset FileSize #Sentences #Entities #Test queries

APR 775MB 1.01M 122K 40
Wiki 1.02GB 1.50M 710K 20

PubMed-CVD 9.3GB 23M 179K 5

cover a wide variety of topics, including locations, companies as well as political
parties, and have different degrees of difficulty for set expansion. After finalizing
the semantic classes for each dataset, the students randomly select entities of
each semantic class from the frequent entity list to form 5 queries of size 3. To
select the queries for PubMed-CVD, we seek help from two additional students
with biomedical expertise, following the same previous approach. Due to the large
size of PubMed-CVD dataset and runtime limitation, we only select 1 semantic
class (hormones) with 5 queries.

With all queries selected, we have humans to label all the classes and instances
returned by each of the following 7 compared methods. For APR and Wiki
datasets, the inter-rater agreements (kappa-value) over three students are 0.7608
and 0.7746, respectively. For PubMed-CVD dataset, the kappa-value is 0.9236.
All entities with conflicting label results are further resolved after discussions
among all human labelers. Thus, we have our ground truth datasets.

Compared methods. Since the focus on this work is the corpus-based set
expansion, we do not compare with other methods that require online data
extractions. Also, to further analyze the effectiveness of each module in SetEx-
pan framework. We implement 3 variations of our framework.

– word2vec [16]: We use the “skip-gram” model in word2vec to learn the
embedding vector for each entity, and then return k nearest neighbors around
seed entities as the expanded set.

– PTE [25]: We first construct a heterogeneous information network including
entity, skip-gram features, and type features. PTE model is then applied to
learn the entity embedding which is used to determine the k nearest neighbors
around seed entities.

– SEISA [10]: An entity set expansion algorithm based on iterative similarity
aggregation. It uses the occurrence of entities in web list and query log as
entity features. In our experiments, we replace the web list and query log
with our skip-gram and coarse-grained context features.

– EgoSet [21]: A multifaceted set expansion system based on skip-gram features,
word2vec embeddings and WikiList. The original system is proposed to expand
a seed set to multiple entity sets, considering the ambiguities in seed set. To
achieve this, we use a community detection method to separate the extracted
entities into several communities. However, in order to better compare with
EgoSet, we carefully select queries that have little ambiguity or at least the
seed set in the query is dominating in one semantic class. Thus, we discard
the community detection part in EgoSet and treat all extracted entities as in
one semantic class.
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Table 2: Overall end-to-end performance evaluation on 3 datasets over all queries.
Methods APR Wiki PubMed-CVD

MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50

EgoSet 0.3949 0.3942 0.3706 0.5899 0.5754 0.5622 0.0511 0.0410 0.0441
SEISA 0.7423 0.6090 0.3892 0.7643 0.6606 0.4998 - - -

word2vec 0.6054 0.5385 0.4180 0.7193 0.6289 0.4510 0.8427 0.7701 0.6895
PTE 0.3144 0.2777 0.1996 0.6817 0.5596 0.3839 0.9071 0.7654 0.5641

SetExpan−cs 0.8240 0.7997 0.7674 0.9540 0.8955 0.7439 1.000 1.000 0.5991
SetExpan−re 0.8509 0.7792 0.7681 0.9392 0.8680 0.7291 1.000 0.9605 0.7371
SetExpanfull 0.8967 0.8621 0.7885 0.9571 0.9010 0.7457 1.000 1.000 0.7454

– SetExpan−cs: Disable the context feature selection module in SetExpan, and
use all context features to calculate distributional similarity.

– SetExpan−re: Disable the rank ensemble module in SetExpan. Instead, we
use all selected context feature to rank candidate entities at one time and
add top-ranked ones into the expanded set.

– SetExpanfull: The full version of our proposed method, with both context
feature selection and rank ensemble components enabled.

For fair comparison, we try different combinations of parameters and report the
best performance for each baseline method.

Evaluation Metrics. For each test case, the input is a query, which is a set
of 3 seed entities of the same semantic class. The output will be a ranked list of
entities. For each query, we use the conventional average precision APk(c, r) at k
(k = 10, 20, 50) for evaluation, given a ranked list of entities c and an unordered
ground-truth set r. For all queries under a semantic class, we calculate the mean
average precision (MAP) at k as 1

N

∑
iAPk(ci, r), where N is the number of

queries. To evaluate the performance of each approach on a specific dataset,
we calculate the mean-MAP (MMAP) at k over all queried semantic classes as
MMAPk = 1

T

∑T
t=1[( 1

Nt
)
∑
iAPk(cti, rt)], where T is the number of semantic

classes, Nt is the number of queries of t-th semantic class, cti is the extracted
entity list for i-th query for t-th semantic class, and rt is the ground truth set
for t-th semantic class.

4.2 Experimental Results

Comparison with four baseline methods. Table 2 shows the MMAP scores
of all methods on 3 datasets3. We can see the MMAP scores of SetExpan out-
performs all four baselines a lot. We further look at their performances on each
concept class, as shown in Figure 4. We can see that the performance of these
baseline methods varies a lot on different semantic classes, while our SetExpan can
consistently beat them. One reason is that none of these methods applies context
feature selection or rank ensemble, and a single set of unpruned features can lead
to various levels of noise in the results. Another reason is the lack of an iterative
mechanism in some of those approaches. For example, even if EgoSet includes
3 Results of SEISA on PubMed-CVD are omitted due to the scalability issue.
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Fig. 4: Evaluation results for each semantic class.

the results from word2vec to help it boost the performance, it still achieves low
MAP scores in some semantic classes. Finding the nearest neighbors in only one
iteration can be a key reason. And although SEISA is applying the iterative
technique, instead of adding a small number of new entities in each iteration, it
expands a full set in each iteration based on the coherence score of each candidate
entity with the previously expanded set. It pre-calculates the size of the expanded
set with the assumption that the feature similarities follow a certain distribution,
which does not always hold to all datasets or semantic classes. Thus, if the size is
far different from the actual size or is too big to extract a confident set at once,
each iteration will introduce a lot of noise and cause semantic drift.

Comparison with SetExpan−re and SetExpan−cs. At the dataset level,
the MMAP scores of SetExpanfull outperforms its two variation approaches. In
the semantic class level, we can see that SetExpan−re and SetExpan−cs sometimes
have their MAP much lower than SetExpanfull while sometimes they almost
achieve the same performance with SetExpanfull. This means they fail to stably
extract entities with good quality. The main reason is still that a single set of
features or ensembles over unpruned features can lead to various levels of noise
in the results. Only under the circumstances that the single set of features or the
unpruned features happen to be nicely selected without too much noise, which
tends to happen when the query is relatively “easy”, these variation approaches
can achieve good results.

Effects of Context Feature Selection. We already see that adding the
context feature selection component helps improve the performance. What’s also
noticeable is that the addition of context selection process becomes more obvious
as the size of the corpus increases. The difference between MMAP scores of
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Fig. 5: Evaluation results for each concept class on individual query

SetExpan−cs and SetExpanfull is much larger in PubMed-CVD compared with
APR and Wiki datasets. This is because that as the corpus size increases, we will
have more noisy features and more candidate entities while the good features to
define the target entity set may be limited. Thus, without context selection, noise
can damage the performance much more. The evidence can also be found from the
performance of EgoSet across the three datasets. It can achieve reasonably good
results in APR and Wiki, however, it performs much worse in PubMed-CVD.

Effect of Rank Ensemble. From the above experiments, the effect of rank
ensemble has variance across the different semantic classes, however, it seems
to be more stable across datasets, compared with the effect of context selection.
This is because we apply the default set of parameter values in each test case
above. In the parameter analysis part, we will show that the number of ensemble
batches and the percentage of features to be randomly sampled can affect the
contribution of rank ensemble to the set expansion performance.

Parameter Analysis. There are totally 4 parameters in SetExpan – Q (the
number of selected context features), α (the percentage of features to be sampled),
T (the number of ensemble batches), and r (the threshold of a candidate entity’s
average rank). We study the influence of each parameter by fixing all other
parameters to default values, and present one graph showing the MMAP scores
of SetExpan on APR dataset versus the changes of that parameter.
– α: From the graph, the performance increases sharply as α increases until it

reaches about 0.6. Then, it starts to stay stable and decreases after 0.7.
– Q: In the range of 50 - 150, the performance increases sharply as Q increases,

which means the majority of top 150 context features can provide rich
information to identify entities belonging to the target semantic class. The
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Fig. 6: Parameter Sensitivity on two datesets

available information gets more and more saturated after Q reaches 150 and
start to introduce noises and hamper the performance after around 300.

– r: Our experiments show that the performance is not very sensitive to the
threshold of a candidate entity’s average rank.

– T : The performance keeps increasing as we increase the ensemble batches,
due to the robustness to noise of ensembling. The performance becomes more
stable after 60 batches.

Case Studies. Figure 7 presents three case studies for SetExpan. We show
one query for each dataset. In each case, we show top 3 ranked entities and
top/bottom 3 skip-gram features after context feature selection for the first 3
iterations as well as the coarse-grained type. In all cases, our algorithm successfully
extracts correct entities in each iteration, and the top-ranked skip-grams are
representative in defining the target semantic class. On the other hand, we
notice that most of the bottom 3 skip-grams selected are very general or not
representative at all. These context features could potentially introduce noisy
entities and thus the rank ensemble can play a rival role in improving the results.

5 Conclusion and Future Work
In this paper, we study the problem of corpus-based set expansion. First, we
propose an iterative set expansion framework with a context feature selection
method, to deal with the problem of entity intrusion and semantic drift. Second,
we develop a novel unsupervised ranking-based ensemble algorithm for entity
selection, to further reduce context noise in free-text corpora. Experimental
results on three publicly available datasets corroborate the effectiveness and
robustness of our proposed SetExpan.

The proposed framework is general and can incorporate other context features
besides skip-grams, such as Part-Of-Speech tags or syntactic head tokens. Besides,
it would be interesting to study more rank ensemble methods for aggregating
multiple pre-ranked lists. In addition, our current framework treats each feature
independently, it would be interesting to study how the interaction of context
features can influence the expansion result. We leave it for future work.
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